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1 Summary

To quantify the genetic similarities and differences among metastases, we
use the “Jaccard similarity coefficient” defined as the fraction of mutations
shared by two given cells, out of all somatic mutations in either of them.
The similarity coefficient considers only somatic mutations. Thus cells taken
from identical twins have a similarity coefficient of 0 by definition (because
they do not share any somatic mutations). At the opposite extreme, two
cells that are identical at every nucleotide have a similarity coefficient of 1.

For reference points to the similarity coefficients among tumors, we cal-
culate theoretical values of this similarity coefficient for two cells randomly
sampled from the same organ in a single individual. In contrast to the ob-
served homogeneity in tumors, we find that the expected similarity coeffi-
cient in healthy tissue is always below 0.2 (Fig. 2b). These values depend on
whether or not the organ tissue is self-renewing. We consider three scenarios
(Fig. A1):

Scenario 1: Non-self-renewing tissue. First we consider an organ that
has grown to size N via a pure birth branching process. With each cell
division, each daughter cell has a Poisson-distributed number of somatic mu-
tations with mean u. In this case, the expected fraction of shared mutations
is approximately 1/ log2(N) for large N . Thus for N = 1010, the expected
similarity coefficient is about 0.03. Figure A2 shows the expected value of
this coefficient as a function of the organ size N . The expected similarity
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Figure A1: Schematic illustration of the three scenarios for somatic evolution
in an organ. (a) In Scenario 1, an organ grows according to a pure birth pro-
cess up to size N and no further cell division occurs. (b) In Scenario 2, a pure
birth process leads to Ncrypt stem cells, each of which founds a single crypt.
Cells in different crypts do not replace each other. (c) In Scenario 3, a pure
birth process leads to Nstem stem cells, which replace each other according
to the Moran model of a well-mixed population.

coefficient is less than ln 4 − 1 ≈ 0.39 for any population size N . For rele-
vant population sizes (N > 100), the expected similarity coefficient is always
below 0.2 (Fig. A2).

Scenario 2: Self-renewing tissue with spatially segregated stem
cells. Second we consider an organ such as the small intestine or colon,
whose tissue is divided into crypts, with a small number of organ-specific
stem cells per crypt. To model this situation we suppose that a pure birth
process leads to some number of cells (Ncrypt), each of which is the initial
stem cell that founds a crypt. Genetic evolution then occurs separately in
each crypt. We note that the similarity coefficient can only decrease from
the time that the crypts are initiated, since they each acquire somatic muta-
tions separately. Thus the expected similarity coefficient is bounded above
by 1/ log2(Ncrypt), as long as Ncrypt is large. For example, if Ncrypt = 107

then the expected similarity coefficient is less than 0.04.

Scenario 3: Self-renewing tissue with a well-mixed stem cell pop-
ulation. Finally we consider a cell population such as hematopoietic cells
which is maintained by a subpopulation of Nstem stem cells. We assume the
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Figure A2: Similarity coefficient (expected fraction of shared mutations) for
two cells sampled from a single organ in a single individual under Scenario 1.
The population is exponentially growing, according to a pure-birth branching
process of rate 1, up to size N . This fraction is bounded above by ln 4 −
1 ≈ 0.39, while for large N it is approximately 1/(log2N). For relevant
population sizes (N > 100), the expected similarity coefficient is always
below 0.2.

stem cells replace each other according to the Moran model of a well-mixed
population. We find that, for reasonable numbers of generations T , the sim-
ilarity coefficient is less than what it would be for a pure birth process alone,
which is approximately 1/ log2(Nstem).

Note that all three models quantify the homogeneity among stem-cell-like
cells. Accounting for possibly additional mutations in short-lived terminally
differentiated cells would further increase the heterogeneity within an organ.

Genetic distance. As a measurement for “genetic divergence”, we also
calculate the expected genetic distance for two cells randomly sampled from
the same organ of an individual (Maley et al., 2006). The somatic genetic
distance between two cells is defined as the total number of nonshared genetic
mutations present in two cells. For this characterization we focus on dividing
tissue (Scenario 2). We find that the expected genetic distance across the

3



exome of two random normal cells is approximately 140 (Section 6).

Last, we calculated confidence intervals for the observed similarity coef-
ficients and genetic distances. We find that for reasonable parameter values
the observed similarity coefficient often underestimates the true coefficient
(Section 7).

2 Modeling heterogeneity in normal tissue

The Jaccard similarity coefficient (also known as Jaccard index) is defined as
the fraction of mutations shared by two cells, out of the total mutations in
either of them: Mshared/(Mshared + Mnonshared). To obtain theoretical values
of this coefficient for cells sampled from non-cancerous tissue, we use the
coalescent perspective. We consider the lineages of the two cells in question
starting from conception. The lineages remain together for some amount of
time τ1, and then are separate for another amount of time τ2 (see Fig. A3).
τ1 and τ2 are random variables whose distributions depend on the scenario
considered. Time is scaled so that cells divide at rate 1.

Overall, the lineages of the two cells have branch length τ1 in common
out of a total (shared and non-shared) branch length of τ1 + 2τ2. We assume
that the number of mutations on a branch is Poisson distributed with rate
proportional to branch length. With this assumption, and given specific
values of τ1 and τ2, the expected fraction of shared mutations (similarity
coefficient) is

E
[

Mshared

Mshared +Mnonshared

]
=

τ1
τ1 + 2τ2

(A1)

Note that this expected fraction does not depend on the mutation rate.
Additionally, if we also condition on a particular value m for the total

number of mutations, i.e., Mshared + Mnonshared = m, then the number of
shared mutations is binomially distributed:

Mshared ∼ Binom

[
m,

τ1
τ1 + 2τ2

]
. (A2)

3 Scenario 1: Pure birth

Scenario 1 describes an organ that grows to full size, at which point cell
division ceases. We assume this growth occurs via a pure birth branching
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Figure A3: Theoretical values of the similarity coefficient for healthy tissue
are obtained using coalescent theory. The lineages remain together for time
τ1, and then are separate for time τ2, where τ1 and τ2 are random variables
whose distributions depend on the process in question. The expected fraction
of shared mutations is τ1/(τ1 + 2τ2).

process that is terminated when the number of cells reaches N .

3.1 Distribution of splitting times

Using the coalescent perspective, we consider the population backwards in
time as it shrinks from N cells to 1. At each step, a random pair of individuals
is chosen to coalesce (meaning that they derive from the same parent in the
previous step).

Consider two cells in the organ at its final size. Let G(n) denote the
probability that their lineages have not coalesced (are still apart) when the
population size is n. Note that G(n) − G(n − 1) is the probability that the
two lineages coalesce at the step when the population shrinks from n cells
to n − 1. This probability can be expressed as the probability G(n) that

coalescence has not already occurred, multiplied by the probability
(
n
2

)−1
that the correct pair is chosen to coalesce at this step. Thus

G(n)−G(n− 1) = G(n)

(
n

2

)−1
=

2 G(n)

n(n− 1)
. (A3)

This recurrence relation has an exact solution:

G(n) = C
n− 1

n+ 1
, (A4)
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valid for any constant C. Noting that G(N) = 1, since the two original cells
are distinct, we have C = (N + 1)/(N − 1), and thus

G(n) =
n− 1

n+ 1

N + 1

N − 1
. (A5)

Interestingly, for large N , G(n) is approximately independent of N :

G(n) ≈ n− 1

n+ 1
. (A6)

To get the probability of coalescence as a function of time, we approximate
the total cell number by deterministic exponential growth, so that n = et for
all t. Then the probability that the lineages have split by time t is

F (t) ≡ P[τ1 ≤ t] =
et − 1

et + 1

N + 1

N − 1
. (A7)

This is the half-logistic distribution (Balakrishnan, 1985) conditioned on its
value being less than lnN . As N →∞ this converges in law to the (uncon-
ditioned) half-logistic distribution. Figure A4 shows the cumulative distri-
bution function of τ1 (i.e., the probability of splitting by time t) for N = 107.

The probability density of splitting at time t is

f(t) = F ′(t) =
2et

(et + 1)2
N + 1

N − 1
. (A8)

The expected splitting time is

E[τ1] =

∫ ∞
0

tf(t) dt

=
N + 1

N − 1
ln 4− 2

N − 1

[
(N + 1) ln(N + 1)−N lnN

] (A9)

In the limit of large population size, the expected splitting time converges to
ln 4:

lim
N→∞

E[τ1] = ln 4. (A10)

Thus the lineages of two randomly chosen cells in a large population are
expected to split ln 4 units of cell division time after the population is ini-
tialized. This quantity is nearly independent of final size of the organ. This
is similar to a classic result obtained by Slatkin and Hudson (1991), except
that these authors found that the expected splitting time is asymptotically
equal to Euler’s constant γ ≈ 0.577. The difference arises because we use
a pure birth process, whereas Slatkin and Hudson consider an exponentially
growing variant of the Wright-Fisher process.
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Figure A4: Cumulative distribution function F (t) for the time τ1 from con-
ception to splitting in a pure birth process (Scenario 1), as given by Eq. (A7).
This is the half-logistic distribution conditioned on its value being less than
lnN .
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3.2 Distribution of shared mutations given the total
number

We have obtained the probability distribution for the amount of time τ1
that the lineages remain together. Since the lineages of the two considered
cells diverged at time τ1 and we approximate the total population size by
exponential growth, the total time τ1 + τ2 is assumed to equal to lnN ; thus
τ2 = lnN − τ1.

Now suppose we know that in total m mutations are present among the
two cells: Mshared +Mnonshared = m. Then, conditional on this event and on a
particular value of the splitting time τ1, the number of shared and nonshared
mutations are binomially distributed:

Mshared ∼ Binom

[
m,

τ1
2 lnN − τ1

]
. (A11)

Now we allow τ1 to vary, but maintain the total number of mutations as
m. The probability distribution of Mshared can be obtained by integrating
over all possible values of τ1:

P[Mshared = k |Mshared +Mnonshared = m]

=
N + 1

N − 1

(
m

k

)∫ lnN

0

tk
[
2(lnN − t)

]m−k
(2 lnN − t)m

2et

(et + 1)2
dt. (A12)

This integral does not evaluate to closed form, but it can be approximated
numerically. Note that this distribution does not depend on the mutation
rate u (because the total number of mutations is fixed).

3.3 Fraction of shared mutations

To calculate the expected value of the similarity coefficient, we evaluate the
expectation of Eq. (A1) over the probability density (A8) for τ1:

E
[

Mshared

Mshared +Mnonshared

]
=
N + 1

N − 1

∫ lnN

0

t

2 lnN − t
2et

(et + 1)2
dt. (A13)

Again, this integral does not evaluate to closed form. Figure A2 plots this
fraction as a function of T . Interestingly, as N → 1, the fraction of shared
mutations approaches ln 4 − 1. This quantity is an upper bound for the
expected fraction of shared mutations.
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4 Scenario 2: Segregated crypts

Scenario 2 describes an organ consisting of Ncrypt spatially segregated crypts,
with each crypt founded by a single stem cell. These founder cells are as-
sumed to arise via a pure birth process. We also assume that cells in one
crypt cannot be replaced by cells in another. Once the crypts develop, they
evolve separately for T units of cell division time. (We always rescale time so
that cell divisions occur at rate 1. Thus the time scale for when the crypts
remain stable and segregated may differ from the time scale of the pure birth
process).

This coalescent process is modeled exactly as in Scenario 1, except that
(a) the pure birth process is terminated when the cell population reaches size
Ncrypt, and (b) the lineages of two cells from different crypts must remain
apart for time T until they can coalesce. Thus the distribution of τ1 is given
by Eq. (A7) with N replaced by Ncrypt, and τ2 = T + lnNcrypt − τ1. From
Eq. (A1) it follows that the similarity coefficient for two cells from different
crypts decreases monotonically with T .

5 Scenario 3: Well-mixed stem cell pool

Scenario 3 describes an organ whose cell population is maintained by a well-
mixed subpopulation of stem cells. We model this as a pure birth process
followed by a Moran process. The pure birth process represents the initial
development of the stem cell pool, and is terminated when the stem cell
population reaches a certain size Nstem. At this point, the stem cell popula-
tion evolves as a Moran process, which lasts for T generations (where each
generation consists of Nstem steps of the Moran process).

Again we consider a coalescent process starting with two cells. Two possi-
bilities arise: the lineages of these cells may coalesce during the Moran phase,
or they may remain separate during the Moran phase and coalesce during the
pure birth process. Coalescent theory says that coalescence during the Moran
phase occurs as a Poisson process with rate Nstem/2 (in units of cell division
time). Thus coalescence occurs during the Moran phase with probability
1− e−2T/Nstem , and during the growth phase with probability e−2T/Nstem .
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5.1 Case 1: Coalescence during the Moran process

Given that coalescence occurs during the Moran process, the distribution for
the coalescence time τ2 is given by the exponential distribution with rate
Nstem/2, conditioned on its value being less than T . Since the total time is
lnNstem + T , we have τ1 = lnNstem + T − τ2

5.2 Case 2: Coalescence during the pure birth process

In this case the two lineages remain apart for time T , after which their
coalescence follows the process described in Scenario 1. The time τ1 that
their lineages are together has probability distribution given by Eq. (A7)
with N replaced by Nstem. Since the total time is lnNstem + T , we have
τ2 = lnNstem + T − τ1.

5.3 Overall fraction of shared mutations

Combining our analyses of the two cases with Eq. (A1), we obtain the ex-
pected similarity coefficient for this scenario:

E
[

Mshared

Mshared +Mnonshared

]
=

2

Nstem

∫ T

0

lnNstem + T − t
lnNstem + T + t

e−2t/Nstem dt

+ e−2T/Nstem
Nstem + 1

Nstem − 1

∫ lnNstem

0

t

2 lnNstem + 2T − t
2et

(et + 1)2
dt. (A14)

Interestingly, for fixed N , the similarity coefficient is nonmonotonic in T
(Fig. A5). For T � N/2, Case 2 dominates in probability. In this case, the
lineages likely split during the birth phase, with an expected splitting time of
ln 4. Thus increasing T only increases the amount of time that the lineages
are apart in this case. For T � N/2, Case 1 dominates in probability. In
this case the expected coalescence time is N/2, and increasing T increases the
time that the lineages spend together. Thus overall the similarity coefficient
first decreases and then increases in T .

In Fig. A5 we assumedNstem = 104 (approximating the human hematopoi-
etic stem cell population). Relevant values of T are below 1, 000 genera-
tions (as stem cells in the hematopoietic system divide approximately once a
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Figure A5: Similarity coefficient in Scenario 3, as a function of the number
T of generations of self-replacement after all stem cells have been produced.
Number of stem cells Nstem = 104. Relevant values of T are below 1, 000
generations, for which case the similarity coefficient is less than it would be
for a pure birth process alone.

month). For such values, the similarity coefficient is less than in a pure-birth
process alone. For larger stem cell populations the similarity coefficient is
even smaller.

6 Scenario 2: Numbers of shared and non-

shared mutations

To calculate the expected number of shared and nonshared mutations, we use
the probability distributions for the amount of time τ1 and τ2. Both times
are defined as numbers of cell divisions and hence by multiplying with a
mutation rate u we directly obtain the number of acquired mutations in this
period of time. The expected numbers of shared and nonshared mutations,
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Figure A6: Expected number of nonshared mutations in Scenario 2, ac-
cording to Eq. (A15). In this scenario, a pure-birth process gives rise to
Ncrypt crypts, each of which follow a self-renewal process for T generations.
Here we have set u = 0.0225 and N = 107. For these parameters, the vast
majority of mutations occur after all crypts have developed, and therefore
E[Mnonshared] ≈ 2uT .

respectively, are given by

E[Mshared] = uE[τ1] = u ln 4

E[Mnonshared] = 2uE[τ2] = 2u(T + lnNcrypt − ln 4).
(A15)

The number of nonshared mutations is shown as a function of T in Fig. A6.
To obtain comparison values for the measured genetic distance of coding

mutations among the metastases, we assume a mutation rate of u = 0.0225
(expected number of acquired mutations across the exome per cell division
assuming a point mutation rate of 5 · 10−10 and 45 megabases covered by
the sequencing machine) and T = 60 · 52 (cell divides once per week for 60
years). This calculation yields an expected genetic distance of 141.1 for two
random cells sampled from the same organ.
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7 Confidence intervals for the similarity co-

efficient and genetic distance

Here we consider how the sensitivity and specificity of bulk sequencing errors
may affect observed values of the similarity coefficient and genetic distance.
Because we used a very conservative scheme for when a mutation is counted
as observed, we consider only type II errors (false negatives), in which a
mutation that is present is not observed. False positives, in which a mutation
is observed but is not actually present, are sufficiently rare under our scheme
so as not to significantly affect the similarity coefficient or genetic distance
(see Online Methods for the calculated false positive rate).

7.1 Notation

We consider two tissue samples taken from different metastases in the same
patient. We define

• A is the true set of mutations in the first sample

• B the true set of mutations in the second sample

• mshared = |A ∩B| is the true number of shared mutations

• mnonshared = |A ∩ BC | + |AC ∩ B| is the true number of nonshared
mutations (superscript C denotes set complement).

Then the true similarity coefficient is

J =
|A ∩B|
|A ∪B|

=
mshared

mshared +mnonshared

.

The true genetic distance is

D = |A ∩BC |+ |AC ∩B| = mnonshared.

We let p denote the false negative rate, so that a true mutation is observed
with probability 1−p and otherwise (with probability p) is missed. The sets of
observed mutations are denoted Â and B̂. The observed similarity coefficient
is

Ĵ =
|Â ∩ B̂|
|Â ∪ B̂|

.
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The observed genetic distance is

D̂ = |Â ∩ B̂C |+ |ÂC ∩ B̂|.

7.2 Analysis of probabilities

We partition the total set of true mutations A∪B into three disjoint subsets:
A∩BC , AC ∩B, and A∩B, Whether or not the mutations in these sets are
observed can be considered independent events.

• For each mutation in A ∩BC ,

– With probability 1−p it is observed and is therefore in
(
A ∩BC

)
,

– With probability p it is not observed and is not in Â ∪ B̂.

• For each mutation in AC ∩B,

– With probability 1− p it is observed and is therefore in Â ∩ B̂C ,

– With probability p it is not observed and is therefore not in Â∪B̂.

• For each mutation in A ∩B,

– With probability (1 − p)2 it is observed in both samples and is
therefore in Â ∩ B̂

– With probability p(1−p) it is observed in the first sample but not
the second, and is therefore in Â ∩ B̂C ,

– With probability p(1− p) it is observed in the second sample but
not the first, and is therefore in ÂC ∩ B̂,

– With probability p2 it is not observed in either sample, and is
therefore not in Â ∪ B̂.

We define the following random variables:

• M̂1 =
∣∣∣(A ∩BC

)
∩
(
Â ∩ B̂C

)∣∣∣+∣∣∣(AC ∩B
)
∩
(
ÂC ∩ B̂

)∣∣∣ is the number

of mutations that are correctly observed to be in only one sample. M̂1

is distributed as Binom[mnonshared, 1− p].
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• M̂2 =
∣∣∣(A ∩B) ∩

(
Â ∪ B̂

)∣∣∣ is the number of mutations in both samples

that are observed at all. M̂2 is independent of M̂1 and is distributed as
Binom[mshared, 1− p2].

• M̂3 =

∣∣∣∣(A ∩B) ∩
(
Â ∩ B̂

)C∣∣∣∣ is the number of mutations that are truly

in both samples, but observed in only one sample. M̂3 is dependent on
M̂2. Conditioned on M̂2 = m, M3 has distribution Binom[m, 2p(1 −
p)/(1− p2)].

• M̂shared =
∣∣∣Â ∩ B̂∣∣∣ is the number of mutations that are observed to be

in both samples (correctly so, since there are no false positives). M̂shared

is dependent on M̂2. Conditioned on M̂2 = m, Mshared has distribution
Binom[m, (1− p)2/(1− p2)]. Clearly we also have M̂3 + M̂shared = M̂2.

7.3 Probability distribution for observed similarity co-
efficient

The observed similarity coefficient Ĵ can be written as

Ĵ =
M̂shared

M̂1 + M̂2

(A16)

The cumulative distribution function (CDF) for the observed similarity co-
efficient is then

P
[
Ĵ ≤ j

]
=

mshared∑
m=0

P
[
M̂2 = m

]
P
[
Ĵ ≤ j

∣∣M̂2 = m
]

=

mshared∑
m=0

(
mshared

m

)
(1− p2)mp2(mshared−m)

× P
[
M̂shared ≤ j(M̂1 +m)

∣∣M̂2 = m
]
.

(A17)

Figure A7 illustrates the CDF for two different false negative rates and
number of shared and nonshared mutations of mshared = mnonshared = 50.
These values for the number of mutations roughly correspond to the num-
bers measured in the data (Supplemental Figs. 1-4). The number of truly

15



0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

j

P
ro

b
ab

il
it

y
J` £

j

p=0.01

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

j

P
ro

b
ab

il
it

y
J` £

j

p=0.1

Figure A7: Cumulative distribution functions for the observed similarity
coefficient Ĵ when the true mutation numbers are mshared = mnonshared = 50.
The false negative rates are p = 0.01 for the left panel and p = 0.1 for the
right. Note that the true similarity coefficient is 0.5 for these examples. With
these parameters and p = 0.01, the 95% confidence interval is 0.47 ≤ Ĵ ≤
0.51. For p = 0.1, the 95% confidence interval is 0.37 ≤ Ĵ ≤ 0.49. This shows
that, with a false negative rate of 10%, the observed similarity coefficient is
almost certainly an underestimate of its true value. Calculations were done
using the Probability function in Mathematica.
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nonshared mutations might be higher because bulk sequencing can not de-
tect mutations at very low frequencies. However, since we are interested in
the mutations present in the founding cells of the metastases, the observed
number of mutations should be an upper bound on what was present when
the metastasis was seeded. We note that the observed values of the similar-
ity coefficient tend to be smaller than the true value (Fig. A7), because false
negatives allow shared mutations to be classified as nonshared.

7.4 Probability distribution for observed genetic dis-
tance

The observed genetic distance Ĝ can be written as

Ĝ = M̂1 + M̂3 (A18)

The cumulative distribution function (CDF) for the observed similarity co-
efficient is then

P
[
Ĝ ≤ g

]
= P

[
M̂1 + M̂3 ≤ g

]
=

mshared∑
m=0

(
mshared

m

)
(1− p2)mp2(mshared−m)

× P
[
M̂1 + M̂3 ≤ g

∣∣M̂2 = m
]
.

(A19)

Figure A8 illustrates the CDF for two different false negative rates.
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Figure A8: Cumulative distribution functions for the observed genetic dis-
tance Ĝ when the true mutation numbers are mshared = mnonshared = 50. The
false negative rates are p = 0.01 for the left panel and p = 0.1 for the right.
Note that the true genetic distance is 50 for these examples. With these
parameters and p = 0.01, the 95% confidence interval is 47 ≤ Ĝ ≤ 53. For
p = 0.1, the 95% confidence interval is 47 ≤ Ĝ ≤ 62. Calculations were done
using the Probability function in Mathematica.
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